4736 Decision Mathematics 1

1	(i)	A	В	С	D		M1	A, B and C correct for first pass	
		614	416	1	198	(A=198)	A1	D = 198 on first pass	
		198	891	2	693	(A=693)	M1	sca at second and third passes	
		693	396	3	297		A1	Second and third passes correct	[4]
	(ii)	0					B1	0	[1]
	(iii)	To make th	he algor	ithm teri	minate		B1	So that it does not get stuck in a loop	[1]
		•						Total =	6

2	(i)	eg		Graph need not be simple or planar	
			M1	A graph with five vertices and at least three correct vertex orders	
			A1	A graph with five vertices of orders 1, 2, 2, 3, 4	
		*			[2]
	(ii)	Semi-Eulerian	M1	Unless their graph was not connected, in which case the answer is 'neither'	
		It has <u>exactly</u> two odd nodes	A1	(Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	[2]
	•		•	Total =	6

ANSWERED ON INSERT

					THIS WEIGHD ON HIGHEIT	
3	(i)	AB = 9 $DF = 14$ $BD = 16$		M1 A1	Not selecting <i>CF</i> (working seen on list) Selecting correct arcs (working seen on list)	
		CD = 18 $FG = 20$ $CF = 22$ $EG = 23$	C	M1 A1	A spanning tree drawn Correct (minimum) spanning tree drawn	
		$ \begin{array}{rcl} EF &=& 26 \\ AC &=& 27 \\ DE &=& 28 \\ AD &=& 29 \end{array} $	= Total weight = 100	B1	100 cao	
		$\frac{DG}{DG} = \frac{31}{37}$ $\frac{BE}{T} = \frac{37}{7}$				[5]

(ii)	Delete EG from spanning tree		Follow through from part (i) if possible	
(11)	Delete EO from spanning tree $100 - 23 = 77$	B1	Weight of MST on reduced network	
	Two shortest arcs from E are EG and EF	Di	weight of Wist off feduced fictwork	
	77 + 23 + 26 = 126	M1	Adding two shortest arcs to MST	
	Lower bound = 126	A1	126 cao	[3]
(iii)	A - B - D - F - G - E - stall	M1	A-B-D-F-G-E	[V]
(111)	A-B-D-T-O-L-stan	IVII	A-B-D-I-O-L	
	Misses out vertex C	A1	Cannot continue because B, D and F have	[2]
	1.113343 0.00 (0.1011 0		already been visited	[-]
(iv)	B-A-C-D-F-G-E-B	M1	Tour starts $B-A-C-D-F-$	
(= ,)		A1	Correct tour, starting and ending at <i>B</i>	
	Upper bound = 148	B1	148 cao	[3]
(v)	B 2 9 E 6 46		(Accept correct working starting from G ,	
	9 46		if seen)	
		M1	At least three sets of temporary labels	
			correct, with no extras	
	$\begin{bmatrix} A \\ 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} D \\ 3 \end{bmatrix} \begin{bmatrix} 25 \end{bmatrix} \begin{bmatrix} G \\ 7 \end{bmatrix} \begin{bmatrix} 56 \end{bmatrix}$	A 1	Temporary labels all correct, with no	
	29 25 56		extras	
		B1	Permanent labels correct	
		B1	Onder of lab alling (somest on fallow	
	C 4 27 F 5 39	ы	Order of labelling (correct or follow through their permanent labels)	[4]
	27 39		through their permanent labels)	[4]
	Weight = 56	B1	56 cao	
	Route = $A - B - D - G$	B1	A - B - D - G cao	[2]
(vi)	A, B, C and G are odd	B1	Identifying or using A, B, C, G (seen)	_ <u></u> _
(-)	, ,		, , , , , , , , , , , , , , , , , , , ,	
	$AB = 9 \qquad AC = 27 \qquad AG = 56$	M1	At least one correct pairing seen or total	
	$CG = \underline{42} \qquad BG = \underline{47} \qquad BC = \underline{34}$		seen (not just six weights)	
	51 74 90	A1	All three totals correct, or explanation of	
	Repeat AB and CG $(C - F - G) = 51$		how it is known that other pairings are too	
			long	
	Weight = $300 + 51 = 351$	B1	351 cao	[4]
			Total =	23

ANSWERED ON INSERT

4	(i)	8	B1	cao	[1]
	(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
	(iii)	76 65 21 13 88 62 67 28 34	B1	Correct list (complete)	
		2 comparisons and 1 swap	B1	2 and 1	[2]
	(iv)	C S 76 65 21 13 88 62 67 28 34 1 0 88 76 65 21 13 62 67 28 34 4 4 88 76 65 62 21 13 67 28 34 3 2 88 76 67 65 62 21 13 28 34 5 4	M1 M1 A1	Underlined values correct in 3 rd and 4 th passes, values not underlined may be left blank Similarly for 5 th and 6 th passes, follow through slips in previous passes Similarly for 7 th and 8 th passes, but cao (Dependent on both M marks)	[3]
		88 76 67 65 62 28 21 13 34 3 2 88 76 67 65 62 34 28 21 13 4 3	M1 A1 A1	Reasonable attempt at Comp and Swap 1 4 3 5 3 4 cao in figures 0 4 2 4 2 3 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17		Follow through their totals if possible	
	swaps			
	Shuttle sort is more efficient	M1	Choosing shuttle sort with a reason or	
	because		with totals seen (here)	
	although it uses the same number of swaps	A1	Correct reason stated (comparisons and	
	as bubble sort it uses fewer comparisons		swaps both compared, in words)	[2]
			Total =	12

5	(i)	Katie must spend at least 8 minutes preparing	M1	Identifying why there is less than 60	
		the first batch of cookies so she has at most		minutes of baking time (or seeing 52)	
		52 minutes of baking time.	A1	Explaining why 4 is the greatest possible	
		$52 \div 12 = 4.3$, hence at most 4 batches		number of batches	[2]
	(ii)	The last batch takes 12 minutes to bake,		Explaining why total time for preparation	
		so Katie has (at most) 48 minutes of	B1	cannot exceed 48 minutes	
		preparation time			
		$8x + 12y + 10z \le 48 \Rightarrow 4x + 6y + 5z \le 24$	B1	$8x + 12y + 10z \le 48$ seen or explicitly	
		as given		referred to	[2]
	(iii)	Must be integer valued	B1	Integers	[1]
	(iv)	P = 5x + 4y + 3z	B1	5x + 4y + 3z or any positive multiple of	-
	(11)	$T = 3x + 1y + 3\xi$	Di	this	
		Assumes that she sells all the cookies	B1	Assumes she sells them all	
		(batches) that she makes	Di	rissumes she sens them an	[2]
	(v)				[2]
	(*)	P x y z s t 1 -5 -4 -3 0 0 0 0 1 1 1 1 1 0 4	M1	Correct use of slack variable columns	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Objective row correct (cao)	[2]
			A1	Constraint rows correct (cao)	[3]
		4 . 1 . 4 . 24 . 4 . 6 . 4 . 6		Working need not be seen	
		$4 \div 1 = 4, 24 \div 4 = 6, 4 < 6$	B1	Correct pivot choice (row 2) (cao)	
		Pivot on the 1 in the x column	DТ	Correct prvot choice (row 2) (cao)	
		D.		Follow through their tableau and pivot	
		P x y z s t		choice, if possible	
		P x y z s t 1 0 1 2 5 0 20 0 1 1 1 1 0 4	M1	sca pivoting $(x, t \text{ cols}, P \text{ not decreased})$	
		0 0 2 1 -4 1 8	A1	Correct tableau (final column contains no	
I		D 1 D1 5 D2		negative values)	
I		$Row 1 = R1 + 5 \times R2$	B1	Showing valid method,	
		$Row 2 = R2 \div 1$	DΙ		
		$Row 3 = R3 - 4 \times R2$		may imply row 2	
				Follow through their tabless: if reconneble	F41
				Follow through their tableau, if reasonable	[4]
		x = 4, y = 0, z = 0, P = 20		(non-negative variables)	
			N/I 1	Dooding off volves from tables.	
		Katie should make 4 batches of plain	M1	Reading off values from tableau	
		cookies, and no chocolate chip or fruit	Α 1	(may be implied from answer)	
		cookies, to give a profit of £20.	A1	Interpretation: 4 batches of plain cookies	
			Α 1	(may imply none of others)	
I			A1	Interpretation: £20	[2]
					[3]

(vi)			
5	M1	At least two of the lines $y = 2x$, $x+y = 4$ and $4x + 6y = 24$ drawn correctly	
3	A1	All three lines drawn correctly and graph has both scales and labels	
2	A1	Feasible region identified and correct	
		Follow through their feasible region if possible	[3]
0 1 2 3 4 5 6	M1	At least two correct	
Vertices of feasible region are	A1	All (three) correct (1 dp or better)	[2]
$(0,0), (0,4) \text{ and } (1\frac{1}{3}, 2\frac{2}{3})$	M1	Or a line of constant profit <u>drawn</u> (or gradient discussed) and used correctly on	
$x = 0, y = 4 \Rightarrow P = 16$ $x = 1, y = 3 \Rightarrow P = 17$ $(x = 1\frac{1}{3}, y = 2\frac{2}{3} \Rightarrow P = 17\frac{1}{3})$	A1	integer-valued coordinates For (1, 3) or 17 chosen (cao)	
Make 1 batch of plain cookies and 3 batches of chocolate chip cookies	B1	Interpretation: 1 batch of plain, 3 batches of chocolate chip (cao)	[3]
		Total =	25