4736 Decision Mathematics 1

2	(i)	eg	M1 A1	Graph need not be simple or planar A graph with five vertices and at least three correct vertex orders A graph with five vertices of orders 1, 2, 2, 3, 4	[2]
	(ii)	Semi-Eulerian It has exactly two odd nodes	M1 A1	Unless their graph was not connected, in which case the answer is 'neither' (Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices of order 1	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	[2]

ANSWERED ON INSERT

3	(i)	$A B=9$ $D F=14$ $B D=16$ $C D=18$ $F G=20$ $G F=22$ $E G=23$ $E F=26$ $A C=27$ $D E=28$ $A D=29$ $D G=34$ $B E=37$	Total weight $=100$	M1 A1 M1 A1 B1	Not selecting CF (working seen on list) Selecting correct arcs (working seen on list) A spanning tree drawn Correct (minimum) spanning tree drawn $100 \text { сао }$	[5]

(ii)	Delete $E G$ from spanning tree $100-23=77$ Two shortest arcs from E are $E G$ and $E F$ $77+23+26=126$ $\text { Lower bound }=126$	B1 M1 A1	Follow through from part (i) if possible Weight of MST on reduced network Adding two shortest arcs to MST 126 cao	[3]
(iii)	$A-B-D-F-G-E-\text { stall }$ Misses out vertex C	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$A-B-D-F-G-E$ Cannot continue because B, D and F have already been visited	[2]
(iv)	$\begin{aligned} & B-A-C-D-F-G-E-B \\ & \text { Upper bound }=148 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Tour starts $B-A-C-D-F-$ Correct tour, starting and ending at B 148 cao	[3]
(v)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	(Accept correct working starting from G, if seen) At least three sets of temporary labels correct, with no extras Temporary labels all correct, with no extras Permanent labels correct Order of labelling (correct or follow through their permanent labels) $\begin{aligned} & 56 \text { cao } \\ & A-B-D-G \text { cao } \\ & \hline \end{aligned}$	[4] [2]
(vi)	A, B, C and G are odd $\begin{array}{lll} A B=9 & A C=27 & A G=56 \\ C G=\underline{42} & B G=\underline{47} & B C=\underline{34} \\ \hline 91 & & \end{array}$ Repeat $A B$ and $C G(C-F-G)=51$ $\text { Weight }=300+51=351$	B1 M1 A1 B1	Identifying or using A, B, C, G (seen) At least one correct pairing seen or total seen (not just six weights) All three totals correct, or explanation of how it is known that other pairings are too long 351 cao	[4]
			Total =	23

ANSWERED ON INSERT

4 (i)	8	B1	cao	[1]
(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
(iii)	$\begin{aligned} & \hline 766521138862672834 \\ & \text { 2 comparisons and 1 swap } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	Correct list (complete) 2 and 1	[2]
(iv)	76 65 21 13 88 62 67 28 34 C 1	M1 M1 A1 M1 A1 A1	Underlined values correct in $3^{\text {rd }}$ and $4^{\text {th }}$ passes, values not underlined may be left blank Similarly for $5^{\text {th }}$ and $6^{\text {th }}$ passes, follow through slips in previous passes Similarly for $7^{\text {th }}$ and $8^{\text {th }}$ passes, but cao (Dependent on both M marks) Reasonable attempt at Comp and Swap 143534 cao in figures 042423 cao in figures	[3]

(v)	Shuttle sort uses 23 comparisons and 17 swaps Shuttle sort is more efficient because although it uses the same number of swaps as bubble sort it uses fewer comparisons	A1	M1	Follow through their totals if possible Choosing shuttle sort with a reason or with totals seen (here) Correct reason stated (comparisons and swaps both compared, in words)		
Total $=$						$\mathbf{1 2}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 \& (i) \& \begin{tabular}{l}
Katie must spend at least 8 minutes preparing the first batch of cookies so she has at most 52 minutes of baking time. \\
\(52 \div 12=4.3\), hence at most 4 batches
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Identifying why there is less than 60 minutes of baking time (or seeing 52) Explaining why 4 is the greatest possible number of batches \& [2] \\
\hline \& (ii) \& \begin{tabular}{l}
The last batch takes 12 minutes to bake, so Katie has (at most) 48 minutes of preparation time
\[
8 x+12 y+10 z \leq 48 \Rightarrow 4 x+6 y+5 z \leq 24
\] \\
as given
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1
\end{tabular} \& Explaining why total time for preparation cannot exceed 48 minutes
\[
8 x+12 y+10 z \leq 48 \text { seen or explicitly }
\]
referred to \& [2] \\
\hline \& (iii) \& Must be integer valued \& B1 \& Integers \& [1] \\
\hline \& (iv) \& \begin{tabular}{l}
\[
P=5 x+4 y+3 z
\] \\
Assumes that she sells all the cookies (batches) that she makes
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \begin{tabular}{l}
\(5 x+4 y+3 z\) or any positive multiple of this \\
Assumes she sells them all
\end{tabular} \& [2] \\
\hline \& (v) \& \begin{tabular}{l}
\begin{tabular}{ccccccc}
P \& x \& y \& z \& s \& t \\
1 \& -5 \& -4 \& -3 \& 0 \& 0 \& 0 \\
0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 4 \\
0 \& 4 \& 6 \& 5 \& 0 \& 1 \& 24 \\
\(4 \div 1=4,24 \div 4=6\), \& \(4<6\) \\
Pivot on the 1 in the x column \\
P \& x \& y \& z \& S \& t \& \\
1 \& 0 \& 1 \& 2 \& 5 \& 0 \& 20 \\
0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 4 \\
0 \& 0 \& 2 \& 1 \& -4 \& 1 \& 8
\end{tabular} \\
Row \(1=\mathrm{R} 1+5 \times \mathrm{R} 2\) \\
Row \(2=\mathrm{R} 2 \div 1\) \\
Row 3 = R3-4×R2
\[
x=4, y=0, z=0, P=20
\] \\
Katie should make 4 batches of plain cookies, and no chocolate chip or fruit cookies, to give a profit of \(£ 20\).
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Correct use of slack variable columns \\
Objective row correct (cao) \\
Constraint rows correct (cao) \\
Working need not be seen \\
Correct pivot choice (row 2) (cao) \\
Follow through their tableau and pivot choice, if possible sca pivoting (\(x, t\) cols, \(P\) not decreased) Correct tableau (final column contains no negative values) \\
Showing valid method, may imply row 2 \\
Follow through their tableau, if reasonable (non-negative variables) \\
Reading off values from tableau (may be implied from answer) Interpretation: 4 batches of plain cookies (may imply none of others) Interpretation: £20
\end{tabular} \& [3]

[4]

\hline
\end{tabular}

